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  Abstract
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Large state or regional environmental flow programs, such as the one based on the California Environmental Flows Framework
(CEFF), rely on broadly applicable relationships between flow and ecology to inform management decisions. California, despite
having high flow and bioassessment data density, has not established relationships between specific elements of the annual
hydrograph and biological stream condition. To address this, we spatially and temporally linked USGS gage stations and biological
assessment sites in California to identify suitable site pairs for comparisons of streamflow alteration with biological condition at a
statewide scale. Flows were assessed using a set of functional flow metrics which provide a comprehensive way to compare
alteration and seasonal variation in streamflow across different locations. Biological response was evaluated using the California
Stream Condition Index (CSCI) and Algal Stream Condition Index (ASCI), which quantify biological conditions by translating benthic
invertebrate or algal resources with watershed-scale environmental data into an overall measure of stream health. These indices
provide a consistent statewide standard for interpreting bioassessment data and, thus, a means of quantitatively comparing
stream conditions throughout the state. The results indicate that indices of biological stream condition were most closely
associated with flow alteration in timing metrics such as fall pulse timing, dry-season timing, and wet season timing. Magnitude
metrics such as dry-season baseflow, wet season baseflow, and the fall pulse magnitude were also important drivers of variation,
and a metric of seasonality was strongly tied to biological stream conditions, particularly in snowmelt streams. Development of
flow criteria under CEFF should consider that alteration to any of these seasonal flow components (e.g., dry-season baseflow, fall
pulse flow, wet-season baseflow, spring recession flow) may be important in restructuring biological communities.

   

  Contribution to the field

Large state or regional environmental flow programs rely on broadly applicable relationships between flow and ecology to inform
management decisions. California, USA, despite having high flow and bioassessment data density, has not established relationships
between specific elements of the annual hydrograph and biological stream condition. We spatially and temporally linked river flow
stations and biological assessment sites in California to identify suitable site pairs for comparisons of streamflow alteration with
stream health based on biological indices of benthic invertebrates and algae at a statewide and stream class scale. These indices
provide a consistent statewide standard for interpreting bioassessment data and, thus, a means of quantitatively comparing
stream conditions throughout the state. The results indicate that stream health indices were most closely associated with flow
alteration via timing metrics such as seasonality, fall pulse timing, dry-season timing, and wet season timing. Development of
ecological flows should consider that alteration to any of these seasonal flow components may be important in restructuring
biological communities, and flow management can be implemented using this approach to further identify linkages between flow
and biological stream condition.
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Abstract 12 
 13 
Large state or regional environmental flow programs, such as the one based on the California 14 
Environmental Flows Framework (CEFF), rely on broadly applicable relationships between flow and 15 
ecology to inform management decisions. California, despite having high flow and bioassessment 16 
data density, has not established relationships between specific elements of the annual hydrograph 17 
and biological stream condition. To address this, we spatially and temporally linked USGS gage 18 
stations and biological assessment sites in California to identify suitable site pairs for comparisons of 19 
streamflow alteration with biological condition at a statewide scale. Flows were assessed using a set 20 
of functional flow metrics which provide a comprehensive way to compare alteration and seasonal 21 
variation in streamflow across different locations. Biological response was evaluated using the 22 
California Stream Condition Index (CSCI) and Algal Stream Condition Index (ASCI), which 23 
quantify biological conditions by translating benthic invertebrate or algal resources with watershed-24 
scale environmental data into an overall measure of stream health. These indices provide a consistent 25 
statewide standard for interpreting bioassessment data and, thus, a means of quantitatively comparing 26 
stream conditions throughout the state. The results indicate that indices of biological stream condition 27 
were most closely associated with flow alteration in timing metrics such as fall pulse timing, dry-28 
season timing, and wet season timing. Magnitude metrics such as dry-season baseflow, wet season 29 
baseflow, and the fall pulse magnitude were also important drivers of variation, and a metric of 30 
seasonality was strongly tied to biological stream conditions, particularly in snowmelt streams. 31 
Development of flow criteria under CEFF should consider that alteration to any of these seasonal 32 
flow components (e.g., dry-season baseflow, fall pulse flow, wet-season baseflow, spring recession 33 
flow) may be important in restructuring biological communities.  34 
  35 
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1 Introduction 36 

Flow alteration is a pervasive and significant issue globally and in California (Poff et al., 2007; 37 
Grantham et al., 2014). Over 95% of California’s gaged streams have altered flow (Zimmerman et 38 
al., 2017), and hydrologic alteration of flow by dams, diversions and urbanization can impact both 39 
seasonal and inter-annual flow variability. These flow modifications can impact population 40 
connectivity and gene flow, biodiversity, as well as ecological processes (Dudgeon et al., 2006; 41 
Yarnell et al., 2010; Carlisle et al., 2011; Peek et al., 2021). While the causes and related impacts of 42 
flow alteration are well documented (Poff et al., 2007), significant gaps exist in linking flow 43 
management with ecological responses to track current stream conditions, evaluate restoration 44 
efficacy, and provide future flow recommendations (Poff and Zimmerman, 2010). 45 

A critical component of developing ecological flow needs for management is to identify relationships 46 
between specific flow metrics (that represent distinct elements of the annual hydrograph) and 47 
measures of biological stream conditions at broad spatial scales. Biological indicators have been 48 
widely used for assessing stream conditions, and benthic invertebrates and algae have been 49 
successfully used as indicators of stream health in a wide range of studies across the USA (Stevenson 50 
and Smol, 2003; Lawrence et al., 2010; Stevenson et al., 2010; Lunde et al., 2013; Stevenson, 2014; 51 
Mazor et al., 2016; Steel et al., 2018). Notably, these bioindicators have been extensively used to 52 
quantify biological impairment associated with shifts in the environment. For instance, hydrologic 53 
alteration or impairment has been shown to strongly influence aquatic benthic invertebrate 54 
communities (Poff et al., 2007; Rehn, 2009), and benthic invertebrates have more recently been used 55 
to link metrics of hydrologic variability to biological response (Poff and Zimmerman, 2010; Steel et 56 
al., 2018). The direct relationship between algae and flow has been reported as limited (Kirkwood et 57 
al., 2009; Miller et al., 2009; Schneider et al., 2016), with some exceptions involving algal blooms in 58 
large rivers (Cheng et al., 2019; Xia et al., 2020) and directly following a flood (Schneider et al., 59 
2016). However, impacts of flow alteration on water quality (Nilsson and Renöfält, 2008) can also 60 
indirectly influence the composition of algal communities (Allan, 2004; Lange et al., 2016), thus 61 
these indicators provide a way to assess current conditions in multiple ways. 62 

A major challenge to linking specific flow metrics with biological stream conditions is pairing data 63 
spatially and temporally and disentangling complex interactions among various flow components. 64 
While several monitoring datasets exist across broad spatial and temporal scales, identifying ways to 65 
coalesce and synthesize these data in a cogent manner remains difficult. Synthesis of existing 66 
monitoring datasets into a single scale or outcome is an important step for providing context to 67 
comparing sites, prioritize management actions, and improve monitoring and evaluation of 68 
restoration actions. While unified assessment tools have been developed (see Mazor et al., 2016; 69 
Beck et al., 2019b; Theroux et al., 2020), it remains difficult to integrate biological and flow metrics 70 
across a highly managed and heterogeneous landscape such as California.  71 

There are several key datasets that provide data suitable for evaluating links between functional flows 72 
and stream health via biological indicators, though each is collected independently, thus sites are not 73 
often nested or designed to work in parallel. For biological and biophysical data, the Surface Water 74 
Ambient Monitoring Program (SWAMP) is tasked with assessing surface water quality throughout 75 
California. The program coordinates water quality monitoring across the state and collects data to 76 
support water resource management by the State Water Boards. For example, the data collected by 77 
SWAMP’s probabilistic Perennial Stream Assessment survey is used to characterize in-stream 78 
biological conditions and make estimates about the extent of healthy streams in different regions of 79 
the state. These data include several biological indicators, including benthic invertebrates, benthic 80 
algae, and measures of physical habitat integrity. In addition, the US Geological Survey (USGS) 81 
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National Water Information System (NWIS) is a comprehensive and distributed application that 82 
provides a wide range of water data, including daily stream flows from over 28,000 stations across 83 
the United States. However, identifying how these datasets may integrate effectively remains an 84 
important first step towards a more unified development of ecological flow needs in freshwater 85 
systems. 86 

California is well suited to test methods for identifying patterns in biological stream conditions 87 
associated with flow alteration because of its diversity of climate, geology, hydrology, and land use 88 
impacts. To better describe and quantify the different components of a seasonal hydrograph, a 89 
functional flow approach provides a standardized hydrologic method to evaluate and compare the 90 
role of flows in a stream ecosystem (Yarnell et al., 2020). Twenty-four functional flow metrics 91 
(FFM) were developed for California by Yarnell et al (2015, 2020) and comprise five main flow 92 
components (fall pulse flow, wet-season baseflow, peak flow, spring recession flow, and dry-season 93 
baseflow) of a flow regime, with individual metrics describing the magnitude, timing, frequency, 94 
duration and rate of change of each functional component (Appendix Table S1). They are not directly 95 
linked to individual/specific organisms/groups, but are associated to specific biological and 96 
ecosystem processes (Yarnell et al., 2020). Calculated from existing flow data, functional flow 97 
metrics provide a comprehensive way to compare alteration and seasonal variation in streamflow 98 
across different locations. 99 

Standardized bioassessment indices such as the California Stream Condition Index (CSCI) and the 100 
Algal Stream Condition Index (ASCI) are quantitative measures of stream condition which can be 101 
used across broad spatial scales (Mazor et al., 2016; Theroux et al., 2020). Leveraging these 102 
statewide datasets in conjunction with recent methods for quantifying hydrologic variability at the 103 
stream segment scale across California (Stein et al.; Yarnell et al., 2020), provides a unique 104 
opportunity to assess biological response to hydrologic alteration in California. ASCI and CSCI are 105 
predictive multimetric indices developed for California streams (Mazor et al., 2016; Theroux et al., 106 
2020) and comprise many stream and landscape components that describe biological sensitivities or 107 
tolerances to disturbance. The indices allow for the evaluation of biotic response without specificity 108 
to one individual metric (e.g., taxa richness), enabling coverage of a broader range of characteristics 109 
and stressors associated with individual watersheds. These indices are intended to aid stream 110 
management and decision making (e.g., condition assessment, prioritization and flow target 111 
development; see (Stein et al., 2017; Mazor et al., 2018; Beck et al., 2019a) and have been integrated 112 
into unified assessments of stream health (Beck et al., 2019b). With low regional bias and 113 
consideration of natural variation, ASCI and CSCI can distinguish between reference and 114 
biologically degraded sites, can be applied at multiple scales, and are appropriate to apply to the 115 
diverse landscapes of California (Mazor et al., 2018). 116 

Identifying and understanding functional flow linkages between biological responses and specific 117 
elements of the flow regime are crucial for implementing a functional flow approach. Identifying 118 
which metrics or elements of a flow regime have the greatest impact on benthic invertebrate and algal 119 
communities for monitoring and management of stream health provides a quantitative method to 120 
build on documented relationships between flow and functional processes in riverine systems 121 
(Yarnell et al., 2015). Functional flow metrics provide a method to quantify these linkages—for 122 
example the hyporheic zone is linked with wet season baseflow, the fall pulse flow helps flush 123 
nutrients downstream, and the spring recession can export nutrients from floodplain to channel—as 124 
different hydrologic elements can support different biogeochemical and ecosystem functions (Yarnell 125 
et al., 2015). 126 
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A significant gap in our understanding and implementation of environmental flows is determination 127 
of how certain flow components link to biological stream conditions. For assessment, monitoring, 128 
and recovery purposes, it is important to determine and evaluate such linkages. Identifying key 129 
parameters that are comparable and measurable (i.e., FFM, CSCI, ASCI) is important to assess 130 
restoration efficacy and track environmental change in managed freshwater systems, particularly as 131 
demand for freshwater increases. Despite this importance, few studies have examined these linkages 132 
at broad spatial scales. As such, our objectives were to: (i) identify functional flow-biological 133 
condition metrics that explain the greatest variation in statewide and regional data, and (ii) assess 134 
relationship trends between functional flow metrics and biological condition. This research has 135 
important implications for environmental flow management, particularly where practitioners seek to 136 
link biological response to functional flow components. 137 

2 Materials and Methods 138 

2.1 General Approach 139 

To assess relationships between streamflow condition and stream health, all ASCI and CSCI sites 140 
were spatially and temporally paired with proximal USGS gages across California. Using these 141 
paired sites, we calculated functional flow metrics for the 24 metrics defined by Yarnell et al. (2020), 142 
using a minimum of 10 years of continuous flow data at each selected USGS gage site. In some 143 
cases, ASCI and CSCI sites were associated with more than one USGS gage. We calculated a metric 144 
of hydrologic alteration using a normalized difference between the observed median value and 145 
predicted median value of each metric. Statistical models were then developed to identify which of 146 
the functional flow metrics were most closely associated with biological index scores, and the 147 
directionality of those relationships. 148 

2.2 Pairing of Biological Stream Condition (CSCI & ASCI) sites with USGS gage sites 149 

We identified all bioassessment sites (n=2,935) in the SWAMP dataset with available ASCI and 150 
CSCI scores from data sampled between 1994-2018 during late spring and summer months (May to 151 
September, when sampling typically occurs). To pair bioassessment sites with USGS gage sites, we 152 
filtered locations to include only bioassessment sites occurring in the same HUC12 catchment as 153 
USGS gages with at least 10 years of contiguous daily flow data (Figure 1). We filtered 154 
bioassessment sites from the previous step to include only sites on the same National Hydrography 155 
Dataset (NHD) mainstem stream or river as the USGS gage (in the same HUC12 watershed)—156 
provided each site was within 10 km downstream of the gage—using the nhdplusTools, dplyr, and sf 157 
packages in R version 4.1.1 (Blodgett, 2018; Pebesma, 2018; Wickham et al., 2018, 2019; R Core 158 
Team, 2021). Using this list of biological-gage site pairs, we removed sites that did not contain flow 159 
data after 1994 to ensure temporal overlap with the biological assessment sampling events (i.e., all 160 
ASCI and CSCI data was collected and calculated after 1994). Data from final site pairs were used in 161 
all subsequent analyses. For BMI sampling events and resulting ASCI or CSCI scores that occurred 162 
in the same water year at the same location, we calculated the median value of these replicate scores 163 
to use in the statistical modeling. 164 

2.3 Calculating Delta Hydrology using Functional Flow Metrics 165 

Once the selected ASCI and CSCI sites were paired with proximal USGS sites, we calculated 166 
functional flow metrics (Grantham et al.) over the longest contiguous period of record for each USGS 167 
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gage using the using the Functional Flows Calculator API client package in R (version 0.9.7.2)1, 168 
which uses hydrologic feature detection algorithms developed by Patterson et al. (2020) and the 169 
Python functional flows calculator2. We calculated a normalized metric based on the departure from 170 
the predicted reference flow (difference between the observed functional flow metric and the 171 
predicted functional flow metric) associated with the stream segment at the USGS gage (see 172 
Grantham et al. this issue for additional details on how predicted reference-based functional flow 173 
metrics were modeled). This measure of delta hydrology was calculated as: 174 

(50	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒	𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝐹𝐹𝑀	175 
− 	50𝑡ℎ	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐹𝐹𝑀)	/	50𝑡ℎ	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐹𝐹𝑀	 176 

In some cases, the functional flow metric value for a single water year at a gage could not be 177 
calculated, resulting in an ‘NA’ value. This could occur for several reasons, such as the data record 178 
was incomplete, or the annual hydrograph was extremely different compared with the predicted 179 
reference condition. These instances would lack a seasonal flow pattern which the flow calculator 180 
needs to derive subsequent metrics (see Grantham et al., this issue). If more than 70% of the annual 181 
values for a metric across the period of record at a gage were NA, then the flow alteration for that 182 
metric at that gage was not included in the dataset. One additional metric, seasonality, was calculated 183 
for each gage using the same period of record, based on Colwell’s metrics which measure the 184 
seasonal predictability of environmental phenomena (Colwell, 1974). These metrics are defined in 185 
terms of Predictability (P), Constancy (C), and Contingency (M)—where M means temporal 186 
variability, or seasonality, and P is the reliable recurrence of seasonal patterns across multiple cycles. 187 
Importantly, Colwell’s P is maximized when environmental phenomenon is constant throughout the 188 
year, if the seasonal fluctuation is consistent across all years, or a combination of both (Tonkin et al., 189 
2017). Following Tonkin et al. (2017), we used calculated seasonality as Colwell’s M/P, as it can be 190 
applied in a wide range of ecological studies (Tonkin et al., 2017; Radecki-Pawlik et al., 2020; Peek 191 
et al., 2021), and provides a measure (ranging from 0 to 1, with 1 being highly seasonal) of how the 192 
environment varies within a single year, which in this case was based on daily flow values from each 193 
gage selected for analysis.  194 

 
1 https://github.com/ceff-tech/ffc_api_client 
2 https://github.com/NoellePatterson/ffc-readme 
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 195 

2.4 Statistical Analysis of Stream Condition Indices vs. Functional Flow Metrics 196 

To determine which functional flow metrics had the strongest association with streamflow alteration, 197 
we modeled estimates of delta hydrology (departure from the predicted reference flow) for each 198 
functional flow metric against biological condition scores (i.e., ASCI and CSCI) using boosted 199 
regression tree analysis, following methods from Steel et al. (2018). 200 

Each model was run with CSCI or ASCI as the response, and the delta hydrology statistic for each 201 
FFM as well as seasonality as the covariates. Boosted regression trees, a method from the decision 202 
tree family of statistics, are well suited for large and complex ecological datasets; they do not assume 203 
normality nor linear relationships between predictor and response variables, they ignore non-204 
informative predictor variables, and they can accept predictors that are numeric, categorical, or 205 
binary (Elith et al., 2008; Brown et al., 2012). Boosted regression trees are also unaffected by outliers 206 
and effectively handle both missing data and collinearity between predictors (De’ath, 2007; Dormann 207 
et al., 2013). Importantly, such methods are becoming more common in ecological analyses and have 208 
been shown to outperform many traditional statistical methods such as linear regression, generalized 209 
linear models, and generalized additive models (Guisan et al., 2007). Boosted regression tree models 210 
were run with grid iteration and tuning across parameters (shrinkage [0.001–0.005], interaction depth 211 
[3–5], number of minimum observations in a node [3–10], and bag fraction [0.75–0.8]) in model 212 
validation, following guidelines from Elith et al. (2008). To assess the relative influence of each 213 
functional flow metric in the model, we used the mean-square error method (Ridgeway, 2015).  214 

The most influential functional flow metrics were further examined by plotting the delta hydrology 215 
metric values against biological condition scores. To better understand regional patterns and assess 216 
relationships across different scales, we also analyzed ASCI and CSCI scores and delta hydrology for 217 
FFM across three stream classifications—snowmelt, rain, and mixed (combination of rain, snow, or 218 
groundwater)—based on Patterson et al (2020) and (Lane et al., 2017) at a regional scale in 219 
California. Thus, each model was run using only sites associated with one of these stream classes.  220 

3 Results 221 

3.1 Pairing of biological stream condition sites with USGS gage sites 222 

We mapped a total of 2,935 unique locations with CSCI values, 2,320 unique locations with ASCI 223 
values, and 736 USGS gage sites (Figure 2-3) across California. Despite a relatively large pool of 224 
sites to work with, after filtering and pairing, we identified 233 ASCI and 231 CSCI sites associated 225 
with 222 USGS gages across the state. Thus, approximately 10% of the total bioindicator sites exist 226 
in close spatial proximity (<10 river kilometers) to USGS gage sites with long-term flow data (>10 227 
years). Eight metrics were dropped (Appendix Table S1) from the functional flow metric 228 
calculations, thus, for every site pair, data included a single bioindicator score, and 16 flow alteration 229 
metric scores, one for each of the remaining functional flow metrics. The functional flow calculator 230 
returned a wide range of values that indicate the broad array of regional hydrologic conditions across 231 
California, including a small percentage (< 2) of extreme outliers that occurred in the 98th percentile 232 
or greater of all data (Figure 4). 233 

3.2 Statistical Analysis for Statewide Site Pair Dataset 234 
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Boosted regression tree models with delta hydrology and seasonality metrics explained 46% of the 235 
deviance in CSCI data, with a cross-validation correlation of 0.678 (se = 0.019) and 31% in ASCI 236 
with a cross-validation correlation of 0.552 (se = 0.041). Of the 16 functional flow metrics included 237 
in the model, eight had relative importance values greater than 5%, and Colwell’s seasonality metric 238 
was consistently one of the top three variables in all models (Figure 5, Table 1). The two most 239 
influential functional flow metrics in the statewide model were fall pulse timing (CSCI=13.6, 240 
ASCI=12.3% relative influence) and seasonality (CSCI=15.5%, ASCI=7.6%) (Figure 5). Dry season 241 
timing was one of the most important variables in the CSCI model, but it was not influential in the 242 
ASCI model (Table 1). Three of the top metrics for CSCI related to timing (fall pulse timing, 243 
Coldwell’s seasonality, and dry-season timing), while the remaining significant metrics were 244 
associated with flow magnitudes (wet-season baseflow and fall pulse magnitude) (Table 1, Figure 5). 245 
For ASCI, the top metrics were also primarily associated with timing (fall pulse timing, Colwell’s 246 
seasonality, wet season timing, and spring timing), while other influential metrics were largely 247 
associated with flow magnitude (dry-season baseflow, wet-season baseflow, and fall pulse 248 
magnitude). When comparing both ASCI and CSCI cumulatively, the strongest metrics were fall-249 
pulse timing and Colwell’s seasonality, followed by dry-season baseflow and wet-season timing. 250 
Interestingly, the smallest difference in relative importance occurred in the fall pulse magnitude 251 
metric (Figure 5, Table 1).  252 

Normalized delta hydrology (departure from reference value) for three of the top functional flow 253 
metrics was plotted against the ASCI and CSCI scores, grouped by the degree of stream alteration 254 
based on thresholds defined by Mazor et al. (2016) and Theroux et al. (2020). Values that fall below 255 
zero indicate flow values that are earlier (timing) or decreased (magnitude) from the expected 256 
reference condition (Figure 6). Based on the delta hydrology, fall pulse timing occurred earlier than 257 
the expected reference condition across all flow alteration threshold categories—though the lowest 258 
values typically corresponded with the most altered category—for both ASCI and CSCI. For 259 
magnitude metrics, the pattern was more distinct in the fall pulse magnitude metric for ASCI, which 260 
showed all but the “Likely intact” scores were reduced from the expected reference condition, and for 261 
CSCI, all the “very likely altered” and “likely altered” categories had distributions that were reduced 262 
compared to the expected reference conditions (Figure 6). Interestingly, for Colwell’s measure of 263 
seasonality, there was a consistent positive trend towards higher CSCI and ASCI scores with more 264 
predictable and consistent seasonality (recurring intra-annual patterns of temporal variability, e.g., 265 
summer low flow periods and winter floods occurring each year) (Figure 7). 266 

3.3 Statistical Analysis by Stream Class 267 

Using the paired sites, we split sites based on stream class (Patterson et al., 2020), which were 268 
predominantly in stream segments classified as Rain (Snowmelt: ASCI=37, CSCI=55; Mixed: 269 
ASCI=88, CSCI=83; and Rain: ASCI=231, CSCI=226). Note, ASCI and CSCI sites paired with 270 
multiple proximal USGS gages, thus sample sizes differ from the total number of unique stations 271 
(Figure 2-3). Stream class models of delta hydrology showed seasonality, fall pulse, dry season, and 272 
wet season flow components were consistently important in all regional models, while spring 273 
recession flow was important primarily in the rain and mixed stream class models (Table 1, Figure 274 
8). The only regional model that included a peak flow component was the ASCI-snowmelt model. 275 
Here, the 10-year flood magnitude had the highest relative influence score for ASCI, but seasonality 276 
and fall pulse metrics were stronger drivers of delta hydrology in CSCI (Table 1). The fall pulse 277 
timing was the most dominant metric for CSCI in the rain model and ASCI in the model of mixed 278 
stream class sites, while the most important metric in the snowmelt model for CSCI was Colwell’s 279 
seasonality (Table 1, Figure 9). 280 
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Several metrics with the highest relative influences in the regional stream class models were further 281 
examined by plotting the delta hydrology values for each functional flow metric against the paired 282 
bioindicator scores by the thresholds identified in each bioassessment index. Figure 9 shows the 283 
highly variable nature of the large dataset, which is to be expected given the inherent wide diversity 284 
of climate and topography across California. However, trends in the data indicate potential 285 
underlying relationships that should be explored further. These data indicate that as seasonality 286 
increases, stream condition (ASCI or CSCI) index also increases, though this pattern is most 287 
pronounced in the mixed and snowmelt stream classes (Figure 9A). For fall pulse timing, the rain 288 
stream class had the greatest number of sites and the clearest pattern, indicating all sites had earlier 289 
than the expected reference condition across all flow alteration categories—though the lowest values 290 
corresponded with the most altered category—for both ASCI and CSCI. In the mixed stream class 291 
and snowmelt stream class, this pattern was less prevalent.  292 

4 Discussion 293 

Linking flow and bioassessment data sheds light on which relationships are important to consider 294 
when establishing flow criteria and our results indicate that a functional flows approach is well suited 295 
to improve streamflow management in California (Tonkin et al., 2017, 2021). Alteration to seasonal 296 
flow components (e.g., spring recession or fall pulse flow) are closely related to stream health and 297 
may be important in restructuring biological communities. Specifically, metrics associated with flow 298 
timing (including seasonality) were the most influential in linking functional flow metrics to stream 299 
condition. Interestingly, while seasonality was the dominant predictor of delta hydrology for CSCI, it 300 
was the fourth most informative metric in ASCI, indicating at large spatial scales (e.g., California), 301 
there may be differences in sensitivity to seasonal flow changes between invertebrate and algal 302 
communities, and that CSCI based on benthic macroinvertebrates may be a more informative index 303 
in determining flow alteration-stream condition linkages. 304 

4.1 Timing metrics had the strongest link to biological condition 305 

In both statewide and regional models, timing metrics were the most important, often comprising 306 
three or more of the top five metrics. Of the timing metrics, fall pulse timing was the most influential 307 
in describing biological changes in the statewide CSCI and ASCI models. Fall pulse timing is 308 
strongly correlated with the first fall precipitation event following the dry season baseflow period, 309 
occurring between 1st October and 15th December (Patterson et al., 2020). Typically, fall pulse flows 310 
begin in November (Ahearn et al., 2004), but may vary widely (Patterson et al., 2020). Fall flushing 311 
flows and the timing of such are important in determining the biological condition of streams. For 312 
instance, the fall pulse flow is known to provide organic matter and nutrients subsidies to streams 313 
from adjacent riparian habitats and, thus, enhance food resources and detrital carbon for foraging 314 
invertebrates (Ahearn et al., 2004; Blanckaert et al., 2013). Fall pulse flows are also known to 315 
increase invertebrate habitat availability and heterogeneity (Blanckaert et al., 2013; Naman et al., 316 
2016) and reconnect invertebrate communities and population gene flow through dispersal 317 
(Townsend and Hildrew, 1976; Mackay, 1992), providing a vital food resource for resident fishes 318 
and other higher order consumers. Thus, fall pulse flow timing may be a key factor in re-establishing 319 
food web and community connectivity (Elliott, 1973; Nislow et al., 1998; Romaniszyn et al., 2007). 320 
During the dry season low flow period, it is common for invertebrates to use the hyporheic zone as a 321 
refuge from potentially unsuitable environmental conditions (e.g., temperature) (Wood et al., 2010; 322 
Stubbington, 2012) For instance, fall pulse flows are known to reconnect streams with their 323 
hyporheic zone and, as a result, decrease water temperature (Yarnell et al., 2020). Invertebrates also 324 
use changes in water temperature (generally associated with season shifts) as a cue for fall or winter 325 
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emergence (Ward and Stanford, 1982) the timing of which may help synchronize life history events 326 
or behavioral adaptations, ultimately increasing reproductive success (Lytle, 2001; Lytle and Poff, 327 
2004). 328 

Similar to CSCI, fall pulse timing also explained ASCI variability in the statewide model, much of 329 
which was driven by mixed rain and snowmelt streams. Fall pulse timing influence was less 330 
influential in snowmelt dominated streams, yet still notable. During the dry season low flow period, 331 
filamentous algal mats typically become more prevalent and are associated with increases in stream 332 
temperature, reduced streamflow velocity, and nutrient enrichment (McIntire, 1966; Poff et al., 1990; 333 
Suren et al., 2003). Changes in stream velocity associated with the arrival of the fall pulse flow may 334 
scour and effectively remove algal mats, while improving habitat for different algal assemblages or 335 
species ultimately flushing organic material downstream. In mixed rain and snow dominated streams, 336 
although fall pulse timing was mostly early, a clear improvement of ASCI condition was shown as 337 
values approached reference timing (Figure 9B). 338 

Dry season baseflow was an important metric for ASCI in rain dominated streams, showing flows 339 
both above and below reference condition impacting algal condition (Table 1, Figure 6), which 340 
agrees with (Irving et al.) (this issue). There is a greater distribution of flows below the reference 341 
condition in the very likely altered class of ASCI versus the other classes. Dry season baseflow is the 342 
low flow period of the water year, which begins after the spring recession has stabilized (Patterson et 343 
al., 2020). These low flows support algal growth and primary producers by maintaining water 344 
temperature and dissolved oxygen (Appendix Table S1, (Yarnell et al., 2020). Low flows can 345 
increase algal biomass and cover (Biggs, 1985; Biggs et al., 2005; Schneider and Petrin, 2017), and 346 
due to lower velocities and water temperature, algal communities change from a diatom dominated 347 
assemblage to a filamentous algae dominated system (Dewson et al., 2007). 348 

4.2 Seasonality and Climate Change 349 

Cumulatively, timing was the dominant component linking biological stream condition with flow, 350 
which is an important factor for invertebrates that have evolved in river systems with consistent 351 
hydrologic seasonality and predictability. Timing metrics such as wet season timing, dry season 352 
timing, spring timing, and seasonality were all influential in the statewide and regional models. Wet 353 
season timing relates to the time of the water year when flows are consistently elevated from dry 354 
season low flows driven by rain or snow melt (Patterson et al., 2020), while dry-season timing 355 
denotes the time of the water year when flows consistently reach baseflow, following the spring 356 
recession (Patterson et al 2020). While California’s Mediterranean climate integrates a significant 357 
amount of interannual variation (Persad et al., 2020), flow regulation has altered patterns of 358 
hydrologic seasonality and predictability in many watersheds (Kupferberg et al., 2012; Peek et al., 359 
2021). These patterns are exacerbated by climate change, which research indicates earlier peak flow 360 
and snowmelt timing will continue to occur (Kapnick and Hall, 2010), as well as increased volatility 361 
and decreased seasonal predictability via more extreme wet and dry events and swings between these 362 
extremes (Swain et al., 2018; Persad et al., 2020). Therefore, environmental flow recommendations 363 
should consider the ecological flow needs of these communities at scales appropriate to future 364 
conditions. Stream health and biological conditions may not improve if existing communities are 365 
mismatched to current environmental conditions (Botero et al., 2015). Thus, efforts should focus on 366 
river reaches where flow management may provide opportunities to more closely mimic local 367 
reference conditions or consider which functional flow component will be the highest priority given 368 
management goals. 369 
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There are many potential factors that cannot be accounted for within modeling frameworks focused 370 
solely on the impacts of flow modification. Interactions with stream temperature, ecological 371 
dynamics associated with population density and predation, as well as water chemistry and nutrient 372 
loads can all play important roles in influencing biological stream condition (Nilsson and Renöfält, 373 
2008; Miller et al., 2009; Lange et al., 2016; Schneider et al., 2016). However, the benefit of linking 374 
biological indices like CSCI or ASCI with flow is the ability to quantify and assess stream conditions 375 
across broad spatial areas, often with very different underlying geography, geology, and watersheds. 376 
These indices are designed to be regionally stable and are standardized so they can be compared 377 
across large spatial scales (Mazor et al., 2016). This also means it is important to use caution when 378 
interpreting regional models for ecological meaning because CSCI and ASCI produce locally 379 
relevant reference expectations. For example, landscape heterogeneity and local seasonality could be 380 
a strong driver of variation in the data comparisons of models from the same stream class because 381 
these sites may occur in very different geographic regions of California. Future modeling approaches 382 
at finer scales may benefit from more specific models that can account for important local variables 383 
or use individual functional feeding groups or taxa. Nonetheless, identifying key functional flow 384 
metrics that can be evaluated more deeply regarding potential thresholds or discrete trends in 385 
alteration will help inform the development of ecological flow criteria. This approach can be used to 386 
narrow down and identify specific flow metrics that may be most relevant for management by 387 
distilling disparate datasets into more useful and discrete information that can be used to aid decision 388 
making. 389 

5 Conclusion 390 

Future analyses may leverage this information and approach to focus on more discrete flow-stream 391 
condition linkages, with particular attention to temporal lags associated with drought impacts or the 392 
sensitivity of biological metrics. More specific hydrologically sensitive biological metrics (e.g., more 393 
distinct functional feeding groups in benthic invertebrate data, hydrologically sensitive taxonomic 394 
groups, etc.) may provide additional detail for assessment of the impacts of flow alteration on a given 395 
stream reach. Furthermore, this approach provides a method to assess these metrics through time, so 396 
adaptive approaches to flow management can be implemented, monitored, and revised based on 397 
important linkages between flow and biological stream condition. 398 

This analysis highlights that despite the information-rich spatial datasets that span much of 399 
California, there remains a significant gap in leveraging and layering these datasets in an effective 400 
manner. Pairing biological and flow sites spatiotemporally was challenging, and sites were limited 401 
across all stream classes, but particularly in snowmelt dominated systems. When data from biological 402 
or hydrological time series are limited, alternative approaches can be implemented using modeled 403 
streamflow or modeled stream condition indices to predict whether or not flow alteration deviates 404 
from reference expectations (Irving et al.; Stein et al., 2017; Mazor et al., 2018; Maloney et al., 405 
2021). Furthermore, ongoing monitoring may benefit from more discrete and targeted sampling to 406 
link biological data more accurately with surface flow data. Nonetheless, this current approach 407 
provides a novel integration of disparate spatiotemporal datasets and indicates broad relationships 408 
can be identified between functional flow metrics and indices of biological stream condition.   409 
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13 Tables 644 
 645 
Table 1. Mean relative influence values for functional flow metrics included in all CA and each of 646 
the three stream class-based models that assessed flow alteration in relation to ASCI & CSCI scores. 647 
Metrics and relative influence values in gray boxes and bolded were most influential (> 5%).  648 
 649 

 
Flow Metric Name 

All CA Rain Mixed Snowmelt 

CSCI ASCI CSCI ASCI CSCI ASCI CSCI ASCI 

Fall pulse timing 13.6 12.3 20.2 3.6 2.6 35.7 8.6 10.4 

Fall pulse magnitude 6.4 6.9 6.3 4.9 2.7 8.1 10 5.9 

Wet-season timing 5.1 13.8 2.8 17.6 3.6 6.5 2.1 11.6 

Wet-season baseflow 5.8 5 6.6 4.4 1.1 4.6 1.1 5.8 

Wet-season duration 4.4 2.7 4.4 3.4 9.7 8.1 5.1 2.5 

Wet-season median flow 2.2 3.7 2.7 5.7 3.2 0.7 8.2 1.9 

10-year flood magnitude 3.8 3.1 3.5 2.7 5.3 3.3 3.4 16.7 

2-year flood magnitude 4.8 2.8 5.2 2.3 3.6 3.1 4.1 2.5 

5-year flood magnitude 3 1.4 3.4 1.1 3.3 1.2 3.6 0.9 

Spring timing 4.4 4.1 8 6.8 9.1 1.5 1.7 8.4 

Spring duration 3.8 4 3.5 2.2 8 7.3 2.7 2.4 

Spring recession magnitude 3.8 6.5 2.8 5.8 3 6.7 7.6 1.5 

Dry-season high baseflow 2.7 5 3 5.8 9 1 1.2 9.7 

Dry-season baseflow 5.9 15.8 6.5 16.4 4.7 3.2 7.4 2.8 

Dry-season timing 9.7 1.2 5.1 1.1 11.4 2.7 5 2.6 

Dry-season duration 5.2 4 6.2 3.5 5.7 4 8 1.4 

Colwell's M/P 15.5 7.6 9.8 12.7 14.2 2.1 20.3 13 
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14 Figures 651 

 652 

Figure 1. Flow diagram of steps used to pair biological stream condition sites and USGS gage 653 
locations. 654 

 655 

Figure 2. Map of all sampling sites (A) possible CSCI sites and ASCI sites, (B) the potential gages 656 
(n=2097) for the final site pairs, and (C) all unique CSCI, ASCI, and USGS gages sites with >10 657 
years of flow data. Note, some ASCI and CSCI sites paired with more than one gage site. 658 

 659 

Figure 3. Map of selected biological sampling sites for unique ASCI (circles) and CSCI (diamond) 660 
data overlaying stream classifications adapted from Patterson et al. 2020. 661 

 662 

Figure 4. Boxplot of delta hydrology of functional flow metrics used in the analysis across all gages 663 
for ASCI and CSCI. The solid pink line in the background indicates no difference between the 664 
observed 50th percentile and the predicted reference 50th percentile metric value. Values to the left 665 
of the line are reduced or early, values to the right are inflated or late, relative to the expected 666 
reference value. Extreme outliers (>98 percentile) have been removed from the boxplot. 667 

 668 

Figure 5. Relative importance of functional flow metrics in boosted regression tree models assessing 669 
flow alteration relative to ASCI and CSCI scores for paired sites statewide. Relative influence values 670 
were calculated using a mean-square error (MSE) approach, which determines those variables with 671 
the largest average reduction in MSE. Functional flow metrics are described in Appendix Table S1. 672 

 673 

Figure 6. Top FFM (normalized as Delta Hydrology) values vs binned ASCI and CSCI values (based 674 
on thresholds from Mazor et al., 2016 and Theroux et al., 2020) for all CA site pairs. The red zero 675 
line delineates departure from expected reference flow metric, values < 0 are reduced or early, values 676 
> 0 are inflated or late, relative to the expected reference value. Notches indicate an approximate 677 
95% confidence interval to compare medians, thus if notches of two boxplots do not overlap this 678 
suggests the medians are significantly different (see McGill et al., 1978). 679 

 680 

Figure 7. Colwell’s seasonality versus binned ASCI and CSCI values (based on thresholds from 681 
Mazor et al., 2016 and Theroux et al., 2020) for all CA site pairs. Notches indicate an approximate 682 
95% confidence interval to compare medians, thus if notches of two boxplots do not overlap this 683 
suggests the medians are significantly different (see McGill et al., 1978). 684 
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Figure 8. Relative importance of functional flow metrics in boosted regression tree models assessing 686 
flow alteration relative to ASCI and CSCI scores by stream classification (Patterson et al., 2020). 687 
Relative influence values were calculated using a mean-square error (MSE) approach, which 688 
determines those variables with the largest average reduction in MSE. Functional flow metrics are 689 
described in Table 1. 690 

 691 

Figure 9A. Colwell’s seasonality versus binned ASCI and CSCI values (based on thresholds from 692 
Mazor et al., 2016 and Theroux et al., 2020) for all site pairs by stream class. Notches indicate an 693 
approximate 95% confidence interval to compare medians, thus if notches of two boxplots do not 694 
overlap this suggests the medians are significantly different (see McGill et al., 1978). 695 

 696 

Figure 9B. Fall pulse timing (normalized as Delta Hydrology) values vs binned ASCI and CSCI 697 
values (based on thresholds from Mazor et al., 2016 and Theroux et al., 2020) for all site pairs by 698 
stream class. The red zero line delineates departure from expected reference flow metric, values < 0 699 
are reduced or early, values > 0 are inflated or late, relative to the expected reference value. 700 
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