Modeling Functional Flows to support CEFF implementation

CABW Annual Conference October 11, 2022

Section A

STEPS 1-4

Identify ecological flow criteria using natural functional flows

Section B

STEPS 5-7

Develop ecological flow criteria for each flow component requiring additional consideration

Section C

STEPS 8-12

Develop environmental flow recommendations

Step 1 – Define ecological management goals

Step 2 – Obtain natural ranges of flow metrics for five functional flow components

Step 3 – Evaluate if non-flow factors may affect the ability of natural ranges of functional flow metrics to achieve ecological management goals

Step 4 – Select ecological flow criteria for functional flow components that don't require additional consideration

OUTCOME – Ecological flow criteria from Step 4 and identification of functional flow components requiring further assessment in Section B

SOCIOPOLITICAL CONSIDERATIONS

Functional Flow Components

Yarnell et al. 2020 RRA

Functional Flow Metrics

Metrics describe the magnitude, timing, duration, frequency, and rate-of-change of flow components

Flow Component	Flow Characteristic
Fall pulse flow	Magnitude (cfs)
	Timing (date)
	Duration (days)
Wet-season base flow	Magnitude (cfs)
	Timing (date)
	Duration (days)
Wet-season peak flow	Magnitude (cfs)
	Duration (days)
	Frequency
Spring recession flow	Magnitude (cfs)
	Timing (date)
	Duration (days)
	Rate of change (%)
Dry-season base flow	Magnitude (cfs)
	Timing (date)
	Duration (days)

Functional Flow Calculator (eflows.ucdavis.edu)

California Reference Gages (n = 223)

The Challenge...

Functional Flow Metric Modeling Approach

Functional Flow Metrics

Flow Component	Flow Characteristic	Flow metrics	
Fall pulse flow	Magnitude (cfs)	Peak magnitude of pulse flow	
	Timing (date)	Timing of fall pulse flow	
	Duration (days)	Duration of pulse flow	
Wet-season base flow	Magnitude (cfs)	Magnitude of baseflow (50 th and 90 th percentile of daily flow)	
	Timing (date)	Wet season start timing	
	Duration (days)	Wet season duration	
Wet-season peak flow	Magnitude (cfs)	Magnitude of peak flow (2-, 5- and 10-year recurrence interval)	
	Duration (days)	Duration of 2-, 5-, and 10-year recurrence interval peak flow	
	Frequency	Number of days of 2-, 5-, and 10-year peak flow within year	
Spring recession flow	Magnitude (cfs)	Peak magnitude of spring flow	
	Timing (date)	Spring recession timing	
	Duration (days)	Spring recession duration	
	Rate of change (%)	Spring recession rate-of-change	
Dry-season base flow	Magnitude (cfs)	Magnitude of baseflow (10 th and 50 th percentile of daily flow)	
	Timing (date)	Dry season timing	
	Duration (days)	Dry season duration	

Functional Flow Metric Model Predictions

ALL YEARS

Functional Flow Metric Model Predictions

Functional Flow Metric Model Evaluation

- 1. Screen out sites with limited number of observed values (< 15-20 years)
- 2. Plot range of predicted values with range of observed values
- 3. Evaluate differences in between predicted and observed values, by several criteria
 - Percent observations within predicted range
 - Observed divided by predicted median value
 - Correlation coefficient (r²)
 - Nash-Sutcliffe Efficiency (NSE)
 - Percent bias

Composite Measure of Model Performance

• Scale all performance criteria from 0-1 and calculate average

Excellent	> 0.9
Very Good	0.81 – 0.90
Good	0.65 – 0.81
Fair	0.50 – 0.64
Poor	<0.5

Flow Component	Flow Characteristic	Performance
Fall pulse flow	Magnitude (cfs)	Very Good
	Timing (date)	Good
	Duration (days)	Good
Wet-season base flow	Magnitude (cfs) – 10 th percentile	Excellent
	Magnitude (cfs) – 50 th percentile	Very Good
	Timing (date)	Very Good
	Duration (days)	Very Good
Peak flow	Magnitude (cfs) – 2, 5, 10-yr rec. int.	Excellent
	Duration (days) – 2, 5, 10-yr rec. int.	Very Good
	Frequency – 2, 5, 10-yr rec. int.	Good
Spring recession flow	Magnitude (cfs)	Very Good
	Timing (date)	Very Good
	Duration (days)	Very Good
	Rate of change (%)	Very Good
Dry-season base flow	Magnitude (cfs) – 50th percentile	Excellent
	Magnitude (cfs) – 90 th percentile	Excellent
	Timing (date)	Very Good
	Duration (days)	Very Good

Modeled natural functional flows

- Predictions of natural functional flow metric ranges at every stream in the state
- Hydrologic models predictions used for 16 metrics and observed, reference-gage data used for 8 metrics
- Ranges reported by water-year type for most metrics

Natural Flows Database

+

_

rivers.codefornature.org

The Nature NATURAL FLOWS Howell Mountain COMID: 1669113 X Spanish Fl NAPA RIVER Recurrence Interval Flow Component Year Type Dry-season base flow v All Years V 2-year v FLOW METRIC 10th pctl 50th pctl 90th pctl Observed Med. 19.7 CFS Dry-season median baseflow 0.22 CFS 5.75 CFS 2.6 CFS 73.5 CFS Dry-season high baseflow 11 CFS 31 CFS 25.4 CFS Dry-season start Apr. 16 May. 25 Jul. 7 May. 15 **Dry-season duration** 141 DAYS 200 DAYS 258 DAYS 215 DAYS Functional Flow Metrics + Lancaster Lompoc Palmdale Victorvill American Santa Barbara Santa Clarita Canyo Oxnard Sulphur Los Angeles Springs Riverside Valley × Zoom in and select a stream segment to view flow predictions Long Bead Esri, USGS | Esri, HERE, Garmin, FAO, NOAA, USGS, Bureau of Land Management, EPA, NPS Powered by Fs

See 2022 publication for details (open-access)

ORIGINAL RESEARCH published: 11 March 2022 doi: 10.3389/fenvs.2022.787473

Modeling Functional Flows in California's Rivers

Theodore E. Grantham^{1,2*}, Daren M. Carlisle³, Jeanette Howard⁴, Belize Lane⁵, Robert Lusardi^{6,7}, Alyssa Obester⁸, Samuel Sandoval-Solis^{2,9}, Bronwen Stanford⁸, Eric D. Stein¹⁰, Kristine T. Taniguchi-Quan¹⁰, Sarah M. Yarnell⁶ and Julie K. H. Zimmerman⁴

- We can predict most functional flow metrics with "good" accuracy
- Functional flow metric predictions have been generated for all streams in the state
- Functional flow predictions have been embedded in California Environmental Flows Framework to guide development of environmental flow recommendations
- Site-specific assessments will help to identify strengths and weaknesses in approach and guide future efforts to improve models

Acknowledgements

CEFF Technical Team and Participants in the E-Flows Workgroup

Daren Carlisle (USGS)

Funding from State Water Board